metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

u-4,4'-Bipyridine-bis[aqua(4-hydroxypyridine-2,6-dicarboxylato)copper(II)]

Xiao-Li Chen,* Ya-Li Qiao, Lou-Jun Gao, Hua-Li Cui and Mei-Li Zhang

Shaanxi Key Laboratory of Chemical Reaction Engineering, Department of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China

Correspondence e-mail: chenxiaoli003@163.com

Received 27 January 2012; accepted 3 February 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.045; wR factor = 0.103; data-to-parameter ratio = 12.4.

The title compound, $[Cu_2(C_7H_3NO_5)_2(C_{10}H_8N_2)(H_2O)_2],$ exhibits a centrosymmetric binuclear molecule. Each completely deprotonated 4-hydroxypyridine-2,6-dicarboxylic acid molecule assumes a tridentate chelating coordination mode. The square-pyramidal coordination geometry around the Cu^{II} ion is completed by the bridging bipyridine ligand and an apical water molecule. Adjacent complexes are connected via $O-H\cdots O$ and $C-H\cdots O$ hydrogen bonds to generate a three-dimensional supramolecular structure.

Related literature

For related literature on the construction of supramolecular structures, see: Robin & Fromm (2006); Desiraju (1989). For compounds using heterocyclic carboxylic acids such as pyridine-, pyrazole- and imidazolecarboxylic acids as building blocks, see: Lin et al. (1998); Zhao et al. (2003); Pan et al. (2000); Liu et al. (2004); Mahata & Natarajan (2005); Panagiotis et al. (2005).

Experimental

Crystal data

$[Cu_2(C_7H_3NO_5)_2(C_{10}H_8N_2)(H_2O)_2]$	V = 1198.9 (2) Å ³
$M_r = 681.50$	Z = 2
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 8.3945 (9) Å	$\mu = 1.85 \text{ mm}^{-1}$
b = 18.433 (2) Å	T = 296 K
c = 7.8686 (10) Å	$0.30 \times 0.25 \times 0.25$ mm
$\beta = 100.044 \ (2)^{\circ}$	

Data collection

```
Bruker SMART 1000
  diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 1996)
  T_{\min} = 0.579, T_{\max} = 0.629
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	H atoms treated by a mixture of
$wR(F^2) = 0.103$	independent and constrained
S = 1.09	refinement
2433 reflections	$\Delta \rho_{\rm max} = 0.44 \text{ e } \text{\AA}^{-3}$
197 parameters	$\Delta \rho_{\rm min} = -0.60 \text{ e } \text{\AA}^{-3}$
2 restraints	

6528 measured reflections

 $R_{\rm int} = 0.041$

2433 independent reflections

1972 reflections with $I > 2\sigma(I)$

Table 1

Selected bond lengths (Å).

Cu1-N1	1.888 (3)	Cu1-O4	2.011 (2)
Cu1-N2	1.944 (3)	Cu1-O6	2.399 (3)
Cu1-O1	1.996 (2)		

Table 2		_	
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O3-H3···O6 ⁱ	0.82	1.86	2.670 (3)	169
$O6-H6B\cdots O4^{ii}$	0.80(2)	2.54 (3)	3.185 (3)	139 (3)
$O6-H6B\cdots O5^{ii}$	0.80(2)	2.17 (2)	2.948 (3)	163 (4)
C12-H12···O3 ⁱⁱⁱ	0.93	2.58	3.246 (4)	129
C8−H8···O1	0.93	2.43	3.003 (4)	120
C12−H12···O4	0.93	2.59	3.142 (4)	118

Symmetry codes: (i) x - 1, y, z; (ii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (iii) $x + 1, -y + \frac{1}{2}, z - \frac{1}{2}$

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

This project was supported by the National Natural Science Foundation of China (grant No. 21101133) and the Natural Science Foundation of the Educational Bureau of Shaanxi Province (grant No. 11JK0565).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2054).

References

- Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Desiraju, G. R. (1989). In Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.
- Lin, W. B., Evans, O. R., Xiong, R. G. & Wang, Z. (1998). J. Am. Chem. Soc. 120. 13272-13274.
- Liu, Y. L., Kravtsov, V., Walsh, R. D., Poddar, P., Srikanth, H. & Eddaoudi, M. (2004). Chem. Commun. pp. 2806-2807.
- Mahata, P. & Natarajan, S. (2005). Eur. J. Inorg. Chem. pp. 2156-2163.

Panagiotis, A., Jeff, W. K. & Vincent, L. P. (2005). Inorg. Chem. 44, 3626-3635.

Pan, L., Huang, X. Y., Li, J., Wu, Y. & Zheng, N. (2000). Angew. Chem. Int. Ed. 39, 527-530.

- Robin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127–2157.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A**64**, 112–122. Zhao, B., Cheng, P., Dai, Y., Cai, C., Liao, D. Z., Yan, S. P., Jiang, Z. H. & Wang, G. L. (2003). Angew. Chem. Int. Ed. 42, 934-936.

supplementary materials

Acta Cryst. (2012). E68, m326-m327 [doi:10.1107/S1600536812004758]

μ -4,4'-Bipyridine-bis[aqua(4-hydroxypyridine-2,6-dicarboxylato)copper(II)]

Xiao-Li Chen, Ya-Li Qiao, Lou-Jun Gao, Hua-Li Cui and Mei-Li Zhang

Comment

The self-assembled construction of supramolecular structure is of current interest because controlling the molecular organization in the solid state can lead to materials with novel structure and promising properties (Desiraju, 1989; Robin & Fromm, 2006). Supramolecular chemistry uses molecular recognition processes that rely heavily on the understanding of the recognition properties of the functional groups involved in these interactions. Recently, increasing investigations have been focused on the constructions of supramolecular structure using heterocyclic carboxylic acids such as pyridine-(Lin et al., 1998; Zhao et al., 2003), pyrazole- (Pan et al., 2000), and imidazole-carboxylic acids (Liu et al., 2004; Mahata & Natarajan, 2005; Panagiotis et al., 2005) as building blocks. These building blocks contain multi-oxygen and N atoms and can coordinate with metal ions in different ways, resulting in the formations of various metal-organic frameworks with specific topologies and useful properties. In this aspect, 4-hydroxypyridine-2,6-dicarboxylic acid (cam), which has six potential donor atoms, is a quite versatile ligand for the construction of metal-organic hybrid compounds. Herein we hydrothermally synthesized the title compound, which exhibits a binuclear structure (Fig. 1). The asymmetric unit consists of a Cu^{2+} ion, one cam²⁻ ion, half 4,4'-bipy ligand, one coordinated water molecule. It is worth noting that each completely deprotonated cam²⁻ ion coordinates one Cu^{2+} ion in a tridentate chelating coordination mode (Scheme 1). Interestingly, the adjacent binuclear complexes form a one-dimensional supramolecular chain via O3—H3···O6 hydrogen bonding interaction (Fig. 2), which is further involved in a three-dimensional supramolecular structure connected via O-H…O and C—H…O hydrogen bonding interactions (Fig. 3).

Experimental

The compound (I) was prepared by hydrothermal method. A mixture of $CuSO_4.5H_2O$ (0.10 mmol), 4,4'-bipyridine (0.10 mmol), 4-hydroxypyridine-2,6-dicarboxylic acid (cam 0.10 mmol) and water (10 ml) was stirred for 30 min. The mixture was then transferred to a 23 ml Teflon-lined autoclave and kept at 433 K for 72 h under autogenous pressure. Then the mixture was cooled to room temperature slowly. Blue single crystals of the title compound suitable for X-ray analysis were obtained from the reaction mixture.

Refinement

The H atoms of phenyl ring were included in the riding approximation with C—H = 0.93 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$. The H atoms attached to O were located from a difference Fourier map and refined isotropically to O—H = 0.82 Å, with $U_{iso}(H) = 1.5U_{eq}(O)$.

Computing details

Data collection: *SMART* (Bruker, 1997); cell refinement: *SMART* (Bruker, 1997); data reduction: *SAINT* (Bruker, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication:

SHELXL97 (Sheldrick, 2008). $O_{03} C_{4} C_{5} C_{6} C_{10} O_{10} C_{10} C_$

Figure 1

The molecular structure and labeling of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (A) 2 - x, 1 - y, -z]

Figure 2

The one-dimensional supramolecular chain formed *via* hydrogen bonding interactions. Dashed lines denote hydrogen bonds.

Figure 3

The three-dimensional supramolecular structure, viewed in the *ac* plane, linked *via* hydrogen bonding interactions. Dashed lines denote hydrogen bonds.

μ -4,4'-Bipyridine-bis[aqua(4-hydroxypyridine-2,6-dicarboxylato)copper(II)]

Crystal data	
$[Cu_{2}(C_{7}H_{3}NO_{5})_{2}(C_{10}H_{8}N_{2})(H_{2}O)_{2}]$ $M_{r} = 681.50$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 8.3945 (9) Å b = 18.433 (2) Å c = 7.8686 (10) Å $\beta = 100.044$ (2)° V = 1198.9 (2) Å ³ Z = 2	F(000) = 688 $D_x = 1.888 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2433 reflections $\theta = 2.2-26.4^{\circ}$ $\mu = 1.85 \text{ mm}^{-1}$ T = 296 K Prism, blue $0.30 \times 0.25 \times 0.25 \text{ mm}$
Data collection Bruker SMART 1000 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.579, T_{max} = 0.629$	6528 measured reflections 2433 independent reflections 1972 reflections with $I > 2\sigma(I)$ $R_{int} = 0.041$ $\theta_{max} = 26.4^{\circ}, \theta_{min} = 2.2^{\circ}$ $h = -10 \rightarrow 10$ $k = -20 \rightarrow 23$ $l = -8 \rightarrow 9$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.045$	Hydrogen site location: inferred from
$wR(F^2) = 0.103$	neighbouring sites
S = 1.09	H atoms treated by a mixture of independent
2433 reflections	and constrained refinement
197 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0447P)^2]$
2 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.44 \ {\rm e} \ {\rm \AA}^{-3}$
	$\Delta \rho_{\min} = -0.59 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cul	0.47889 (5)	0.38222 (2)	0.23311 (6)	0.03017 (17)	
N1	0.2865 (3)	0.34582 (14)	0.2945 (4)	0.0261 (6)	
N2	0.6518 (3)	0.42601 (15)	0.1330 (4)	0.0300 (7)	
01	0.3886 (3)	0.47502 (11)	0.3063 (3)	0.0332 (6)	
O2	0.1826 (3)	0.51815 (12)	0.4202 (4)	0.0377 (7)	
03	-0.1274 (3)	0.26614 (12)	0.4182 (4)	0.0463 (8)	
H3	-0.1858	0.2984	0.4443	0.069*	
04	0.4981 (3)	0.27793 (12)	0.1646 (4)	0.0386 (7)	
05	0.3903 (3)	0.16954 (12)	0.1994 (4)	0.0428 (7)	
C1	0.2557 (4)	0.46880 (17)	0.3631 (5)	0.0280 (8)	
C2	0.1880 (4)	0.39256 (16)	0.3559 (4)	0.0245 (7)	
C3	0.0461 (4)	0.36900 (17)	0.4026 (5)	0.0292 (8)	
H3A	-0.0223	0.4010	0.4462	0.035*	
C4	0.0081 (4)	0.29506 (17)	0.3821 (5)	0.0305 (8)	
C5	0.1158 (4)	0.24840 (18)	0.3192 (5)	0.0318 (8)	
H5	0.0925	0.1992	0.3060	0.038*	
C6	0.2553 (4)	0.27552 (17)	0.2772 (5)	0.0266 (8)	
C7	0.3911 (4)	0.23570 (19)	0.2084 (5)	0.0316 (8)	
C8	0.6991 (4)	0.49448 (19)	0.1714 (5)	0.0369 (9)	
H8	0.6384	0.5229	0.2341	0.044*	
C9	0.8328 (4)	0.52411 (18)	0.1222 (5)	0.0363 (9)	
H9	0.8621	0.5715	0.1542	0.044*	
C10	0.9259 (4)	0.48484 (17)	0.0252 (4)	0.0276 (8)	
C11	0.8717 (4)	0.41528 (19)	-0.0187 (5)	0.0377 (10)	
H11	0.9275	0.3867	-0.0861	0.045*	

supplementary materials

C12	0.7374 (5)	0.38763 (18)	0.0353 (5)	0.0399 (10)
H12	0.7044	0.3407	0.0030	0.048*
O6	0.6528 (3)	0.35779 (13)	0.5027 (4)	0.0359 (6)
H6A	0.689 (4)	0.3975 (13)	0.543 (5)	0.043*
H6B	0.593 (4)	0.3429 (19)	0.564 (4)	0.043*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cul	0.0234 (3)	0.0274 (3)	0.0441 (3)	-0.00220 (18)	0.0182 (2)	-0.00282 (19)
N1	0.0228 (15)	0.0241 (14)	0.0344 (17)	0.0011 (12)	0.0136 (13)	-0.0017 (13)
N2	0.0243 (15)	0.0311 (16)	0.0384 (18)	0.0006 (12)	0.0161 (14)	0.0009 (13)
01	0.0278 (13)	0.0223 (12)	0.0547 (17)	-0.0030 (10)	0.0215 (12)	-0.0014 (11)
O2	0.0336 (14)	0.0254 (13)	0.0598 (19)	-0.0023 (11)	0.0238 (13)	-0.0090 (12)
03	0.0297 (14)	0.0281 (13)	0.088 (2)	-0.0026 (11)	0.0305 (15)	0.0064 (15)
O4	0.0310 (14)	0.0336 (14)	0.0572 (18)	-0.0015 (11)	0.0239 (13)	-0.0100 (13)
05	0.0412 (16)	0.0261 (14)	0.0638 (19)	0.0039 (12)	0.0165 (14)	-0.0095 (13)
C1	0.0260 (18)	0.0241 (17)	0.035 (2)	-0.0014 (14)	0.0094 (16)	-0.0017 (15)
C2	0.0203 (17)	0.0250 (17)	0.0291 (19)	0.0006 (13)	0.0071 (14)	-0.0002 (14)
C3	0.0216 (18)	0.0296 (18)	0.038 (2)	0.0019 (14)	0.0108 (16)	0.0018 (16)
C4	0.0226 (18)	0.0265 (18)	0.044 (2)	-0.0029 (14)	0.0109 (16)	0.0042 (16)
C5	0.0311 (19)	0.0220 (17)	0.045 (2)	-0.0010 (15)	0.0144 (17)	0.0022 (16)
C6	0.0243 (18)	0.0223 (17)	0.035 (2)	0.0001 (14)	0.0091 (15)	-0.0002 (15)
C7	0.029 (2)	0.034 (2)	0.033 (2)	0.0039 (16)	0.0077 (16)	-0.0084 (16)
C8	0.037 (2)	0.0298 (19)	0.050 (3)	0.0017 (16)	0.0242 (19)	-0.0058 (18)
C9	0.037 (2)	0.0253 (18)	0.051 (2)	-0.0088 (16)	0.0220 (19)	-0.0089 (17)
C10	0.0269 (19)	0.0270 (18)	0.032 (2)	-0.0004 (15)	0.0120 (16)	0.0057 (15)
C11	0.034 (2)	0.0312 (19)	0.055 (3)	-0.0020 (16)	0.0280 (19)	-0.0057 (18)
C12	0.040 (2)	0.0288 (19)	0.057 (3)	-0.0072 (17)	0.027 (2)	-0.0071 (18)
O6	0.0350 (16)	0.0296 (13)	0.0482 (18)	-0.0092 (11)	0.0211 (13)	-0.0041 (12)

Geometric parameters (Å, °)

Cu1—N1	1.888 (3)	C3—C4	1.403 (4)	
Cu1—N2	1.944 (3)	C3—H3A	0.9300	
Cu1—O1	1.996 (2)	C4—C5	1.400 (4)	
Cu1—O4	2.011 (2)	C5—C6	1.365 (4)	
Cu1—O6	2.399 (3)	C5—H5	0.9300	
N1—C6	1.324 (4)	C6—C7	1.532 (4)	
N1—C2	1.341 (4)	C8—C9	1.363 (4)	
N2-C12	1.342 (4)	C8—H8	0.9300	
N2—C8	1.342 (4)	C9—C10	1.388 (4)	
01—C1	1.277 (4)	С9—Н9	0.9300	
O2—C1	1.226 (4)	C10—C11	1.384 (5)	
O3—C4	1.330 (4)	C10-C10 ⁱ	1.480 (6)	
O3—H3	0.8200	C11—C12	1.370 (5)	
O4—C7	1.280 (4)	C11—H11	0.9300	
O5—C7	1.222 (4)	C12—H12	0.9300	
C1—C2	1.513 (4)	O6—H6A	0.834 (18)	
C2—C3	1.377 (4)	O6—H6B	0.804 (18)	

N1—Cu1—N2	169.74 (13)	O3—C4—C3	123.4 (3)
N1—Cu1—O1	81.12 (10)	C5—C4—C3	119.3 (3)
N2—Cu1—O1	96.27 (10)	C6—C5—C4	119.7 (3)
N1—Cu1—O4	80.85 (10)	C6—C5—H5	120.2
N2—Cu1—O4	100.83 (10)	C4—C5—H5	120.2
O1—Cu1—O4	161.60 (9)	N1—C6—C5	119.7 (3)
N1—Cu1—O6	97.05 (10)	N1—C6—C7	111.0 (3)
N2—Cu1—O6	93.09 (10)	C5—C6—C7	129.2 (3)
O1—Cu1—O6	96.24 (10)	O5—C7—O4	126.0 (3)
O4—Cu1—O6	89.58 (10)	O5—C7—C6	120.1 (3)
C6-N1-C2	122.8 (3)	04	113.8 (3)
C6—N1—Cu1	119.0 (2)	N2-C8-C9	122.6 (3)
C2-N1-Cu1	118.2 (2)	N2-C8-H8	118.7
$C_{12} = N_{2} = C_{8}$	117.2(2)	C9 - C8 - H8	118.7
$C_{12} = N_2 = C_{11}$	121.7(2)	C8 - C9 - C10	121.2 (3)
C8 = N2 = Cu1	121.7(2) 120.8(2)	C8 - C9 - H9	119.4
C1 - 01 - Cu1	120.0(2) 115.01(19)	C10-C9-H9	119.4
C4 = O3 = H3	109.5	C11 - C10 - C9	115.4
C7 - 04 - Cu1	114.6(2)	$C11 - C10 - C10^{i}$	113.4(3) 122.6(4)
$0^{2}-0^{1}-0^{1}$	114.0(2) 125.8(3)	$C9 - C10 - C10^{i}$	122.0(4) 122.1(4)
$O_2 = C_1 = O_1$	123.6(3)	C_{12} C_{11} C_{10}	122.1(4) 121.3(3)
02 - 01 - 02	117.0(3) 114.6(3)	C12 - C11 - C10	110.3
N1 C2 C3	120.7(3)	C12 = C11 = H11	119.3
N1 = C2 = C3	120.7(3) 111.0(3)	$N_2 C_{12} C_{11}$	119.5
C_{1}^{-}	111.0(3) 128.3(3)	$N_2 = C_{12} = C_{11}$	122.2 (3)
$C_2 = C_2 = C_1$	120.5(3) 117.8(3)	C_{11} C_{12} H_{12}	118.9
$C_2 = C_3 = C_4$	117.8 (3)	Cu1 06 H6A	110.9
$C_2 - C_3 - H_{3A}$	121.1	Cu1 = 06 = H6R	107(3) 104(3)
$C_4 = C_5 = \Pi S A$	121.1 1172(2)		104(3)
03	117.5 (5)	НоА—ОО—НоВ	107 (4)
N2—Cu1—N1—C6	103.6 (6)	01 - C1 - C2 - N1	18(5)
Ω_1 — Cu_1 — N_1 — $C6$	179.6 (3)	$0^{2}-0^{1}-0^{2}-0^{3}$	1.9 (6)
O4-Cu1-N1-C6	33(3)	01 - C1 - C2 - C3	-1780(3)
06-Cu1-N1-C6	-852(3)	N1 - C2 - C3 - C4	-0.5(5)
N_2 — C_{u1} — N_1 — C_2	-772(7)	C1 - C2 - C3 - C4	179 2 (3)
01— $Cu1$ — $N1$ — $C2$	-12(3)	$C^2 - C^3 - C^4 - O^3$	-1782(3)
04-Cu1-N1-C2	-1775(3)	$C_2 - C_3 - C_4 - C_5$	12(5)
06-Cu1-N1-C2	94 1 (3)	03 - C4 - C5 - C6	1.2(0) 1789(3)
N1-Cu1-N2-C12	-936(7)	C_{3} C_{4} C_{5} C_{6}	-0.6(6)
01-Cu1-N2-C12	-1683(3)	$C_{2} = N_{1} = C_{6} = C_{5}$	1.6(5)
04-Cu1-N2-C12	49(3)	C_{11} N_{1} C_{6} C_{5}	-1793(3)
06-Cu1-N2-C12	951(3)	C_{2} N1 $-C_{6}$ $-C_{7}$	-178.6(3)
N1-Cu1-N2-C8	92 1 (7)	$Cu_1 - N_1 - C_6 - C_7$	0.6(4)
01-Cu1-N2-C8	174(3)	C4-C5-C6-N1	-0.8(5)
04—Cu1—N2—C8	-169.4(3)	C4-C5-C6-C7	179 4 (4)
06-Cu1-N2-C8	-79.2(3)	Cu1 - 04 - C7 - 05	-170.6(3)
N1-Cu1-O1-C1	2.3 (3)	Cu1-O4-C7-C6	9.4 (4)
$N_2 = C_{11} = O_1 = O_1$	172.2(3)	N1 - C6 - C7 - 05	173 3 (3)
1,2 Out OI OI	1,2.2 (3)		1,5.5 (5)

O4—Cu1—O1—C1	13.9 (5)	C5—C6—C7—O5	-6.9 (6)
O6—Cu1—O1—C1	-93.9 (3)	N1—C6—C7—O4	-6.8 (5)
N1—Cu1—O4—C7	-7.3 (3)	C5—C6—C7—O4	173.1 (4)
N2—Cu1—O4—C7	-177.1 (3)	C12—N2—C8—C9	-3.2 (6)
O1—Cu1—O4—C7	-19.0 (5)	Cu1—N2—C8—C9	171.4 (3)
O6—Cu1—O4—C7	89.9 (3)	N2-C8-C9-C10	1.5 (6)
Cu1—O1—C1—O2	177.3 (3)	C8—C9—C10—C11	1.0 (6)
Cu1—O1—C1—C2	-2.8 (4)	C8—C9—C10—C10 ⁱ	-178.2 (4)
C6—N1—C2—C3	-0.9 (5)	C9—C10—C11—C12	-1.6 (6)
Cu1—N1—C2—C3	179.9 (3)	C10 ⁱ —C10—C11—C12	177.5 (4)
C6—N1—C2—C1	179.3 (3)	C8—N2—C12—C11	2.5 (6)
Cu1—N1—C2—C1	0.1 (4)	Cu1—N2—C12—C11	-172.0 (3)
02—C1—C2—N1	-178.2 (3)	C10-C11-C12-N2	-0.1 (6)

Symmetry code: (i) -x+2, -y+1, -z.

Hydrogen-bond geometry (Å, °)

	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O3—H3…O6 ⁱⁱ	0.82	1.86	2.670 (3)	169
O6—H6B···O4 ⁱⁱⁱ	0.80 (2)	2.54 (3)	3.185 (3)	139 (3)
O6—H6B···O5 ⁱⁱⁱ	0.80 (2)	2.17 (2)	2.948 (3)	163 (4)
C12—H12···O3 ^{iv}	0.93	2.58	3.246 (4)	129
C8—H8…O1	0.93	2.43	3.003 (4)	120
C12—H12…O4	0.93	2.59	3.142 (4)	118

Symmetry codes: (ii) x-1, y, z; (iii) x, -y+1/2, z+1/2; (iv) x+1, -y+1/2, z-1/2.